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Shifted primes

A shifted prime is an integer of the form p− a, where p is prime and
a ∈ Z \ {0}.

We say that p− a 6= 0 is a shifted-prime divisor of n ∈ N if (p− a) | n.

For each n ∈ N, denote by ω∗a(n) the number of shifted-prime divisors
p− a of n:

ω∗a(n) := #{p > a prime : (p− a) | n}.

We will focus mainly on ω∗(n) := ω∗1(n) and visit briefly the general case
near the end of the talk.

Example

Shifted-prime divisors p− 1 of 24: 1, 2, 4, 6, 12. So ω∗(24) = 5.
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The set Pa
The sets N and Pa = {p− a : p > a} are structurally similar in many ways.

Equidistribution in arithmetic progressions:

1

x
·#{n ∈ N ∩ [1, x] : n ≡ b (mod k)} ∼ 1

k
,

1

π(x)
·#{n ∈ Pa ∩ [1, x] : n ≡ c (mod k)} ∼ 1

ϕ(k)
,

as x→∞, where k ∈ N, b ∈ Z, and c ∈ Z with gcd(a+ c, k) = 1.

Typical number of prime factors: Let S = N or Pa, and Sx = S ∩ [1, x].

Most numbers n in S have about log log n prime factors.

lim
x→∞

1

#Sx
·#
{
n ∈ Sx :

ω(n)− log log n√
log log n

≤ T
}

=
1√
2π

∫ T

−∞
e−t

2/2 dt.

S = N due to Erdős and Kac (1940) and S = Pa due to Halberstam (1955).
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The set Pa

Twin primes: Are there infinitely many shifted primes p+ 2 that are
prime?

The recent breakthroughs made by Zhang, Maynard and Polymath,
building on early works of Goldston, Pintz and Yıldırım, shows that
there exists an even integer 2 ≤ a ≤ 246 such that there are infinitely
many shifted primes p+ a that are prime.

A conjecture of Pomerance on smooth shifted primes (1980):

1

π(x)
·#
{
p ≤ x : P+(p− 1) ≤ y

}
∼ 1

x
·#
{
n ≤ x : P+(n) ≤ y

}
for x ≥ y as y →∞, where P+(m) is the largest prime factor of m.
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Density of smooth numbers

Figure 1: The Dickman–de Bruijn function ρ(u) on [1, 8]

1

x
·#{n ≤ x : P+(n) ≤ x1/u} ≈ ρ(u).
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The function ω∗

The function
ω∗(n) :=

∑
(p−1)|n

1

was first introduced by Prachar (1955). It has played important roles in

the 1983 development of the first unconditional deterministic primality test,
running in nearly polynomial time, by Adleman, Pomerance and Rumely,

the study of Carmichael numbers:

A Carmichael number n is a composite number satisfying bn ≡ b (mod n)
for all b ∈ Z. Korselt showed in 1899 that n ∈ N is a Carmichael number if
and only if n is square-free, and p | n⇒ p− 1 | n− 1. Alford, Granville and
Pomerance (1994) proved that for sufficiently large x, the interval [1, x]
contains at least x2/7 Carmichael numbers. The exponent “2/7” has been
improved to 0.332 by Harman (2005) and to 0.3389 by Lichtman (2022).
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The maximal order of ω∗

The minimal order of ω∗ is trivially 1: ω∗(n) = 1 for odd n ∈ N.

For the maximal orders, we have

lim sup
x→∞

ω(n)

log n/ log log n
= 1,

lim sup
x→∞

log τ(n)

log n/ log log n
= log 2. (Wigert, 1907)

Prachar (1955) showed that for infinitely many n,

ω∗(n) > exp

(
c1

log n

(log log n)2

)
(unconditionally),

ω∗(n) > exp

((
1

2
log 2− ε

)
log n

log log n

)
(under GRH),

where c1 > 0 is some absolute constant, and ε > 0 is fixed but otherwise arbitrary.
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The maximal order of ω∗

Adleman, Pomerance and Rumely (1983) removed one log log n factor
from Prachar’s unconditional bound, obtaining

ω∗(n) > exp

(
c2

log n

log log n

)
for infinitely many n, where c2 > 0 is some absolute computable constant.

They also conjectured that one can take c2 = log 2− ε for any ε > 0. This
conjecture, if true, would imply that the minimal order of the Carmichael
function λ(n) := Exp(Z/nZ)× is

exp

(
1

log 2
(log log n) log log log n

)
,

as indicated in Erdős, Pomerance, and Schmutz (1991).
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The maximal order of ω∗

Recently, Pollack and I examined Prachar’s proof of his GRH-conditional estimate
and observed the following:

1 The Adleman–Pomerance–Rumely conjecture holds if given any ε ∈ (0, 1),

π(x; q, 1) := #{p ≤ x : p ≡ 1 (mod q)} �ε
π(x)

ϕ(q)

for q |
∏
p≤(1−ε) log x p possibly with extremely rare exceptions.

2 The Adleman–Pomerance–Rumely conjecture also follows from Pomerance’s
conjecture that

1

π(x)
·#
{
p ≤ x : P+(p− 1) ≤ y

}
∼ 1

x
·#
{
n ≤ x : P+(n) ≤ y

}
for x ≥ y as y →∞. It is directly related to lower bounding∑

p≤x

∏
q≤(1−ε) log x
q|(p−1)

q.
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The maximal order of ω∗

3 By modifying Prachar’s argument, we found that for infinitely many n,

ω∗(n) > exp

(
0.6269 ln 2 · log n

log log n

)
(unconditionally),

ω∗(n) > exp

(
0.6823 ln 2 · log n

log log n

)
(under GRH).

The first inequality is derived from a result on π(x; q, a) in Alford, Granville
and Pomerance (1994).
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The densities δk(ω
∗)

For any arithmetic function f , we denote by δk(f) the natural density of
the level set {n ∈ N : f(n) = k} for each k ∈ N, namely,

δk(f) := lim
x→∞

#{n ≤ x : f(n) = k}
x

,

provided that this limit exists.

Landau (1900) showed that for every fixed
k ∈ N,

#{n ≤ x : ω(n) = k} ∼ x(log log x)k−1

(k − 1)! log x

as x→∞. So δk(ω) = 0. Since τ(n) ≥ 2ω(n), we also have δk(τ) = 0 for
every k ∈ N.

What about δk(ω
∗)?
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The densities δk(ω
∗)

Theorem 1 (F.–Pomerance, 2024)

For every k ∈ N, the k-level set Lk := {n ∈ N : ω∗(n) = k} admits a positive
natural density δk. Moreover, we have

∑
k≥1 δk = 1.

The key step in establishing Theorem 1 is to verify Lk 6= ∅. The proof makes use
of Chen’s theorem:

P2(x) := {2 < p ≤ x : Ω((p−1)/2) ≤ 2 and P−((p−1)/2) > x3/11} � x

(log x)2
.

Fixing n ∈ 2N, we wish to find some large p ∈ P2(x) such that

ω∗(n(p− 1)/2) = ω∗(n) + 1.

If p ∈ P2(x) fails this property, then there are a | n and b | (p− 1)/2 with
a, b > 1 such that ab+ 1 a prime 6= p.

1 b = (p− 1)/2 with ab+ 1 is prime with a > 2

2 p− 1 = 2qb with ab+ 1 prime, where q, r ∈ (x3/11, x8/11).
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The densities δk(ω
∗)

1 b = (p− 1)/2 and ab+ 1 is prime with a > 2

This means that (i) P−(b) > x3/11, and (ii) 2b+ 1 and ab+ 1 are both
prime. Given a, the count for p is O(x/(log x)3).

2 p− 1 = 2qb with aq + 1 prime, where q, r ∈ (x3/11, x8/11).

For any q ∈ (x3/11, x8/11), the number of primes b < x/2q such that both
ab+ 1 and 2qb+ 1 are prime is

� x

q(log x)3

∏
r|(2q−a)

(
1− 1

r

)−1

� log log q

q
· x

(log x)3
.

Summing this bound on q ∈ (x3/11, x8/11) gives � x log log x/(log x)3 for
the number of p in consideration.

The contributions from both cases are o(#P2(x)). So for sufficiently large x, we
can find p ∈ P2(x) satisfying

ω∗(n(p− 1)/2) = ω∗(n) + 1.
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The densities δk(ω
∗)

Table 1: Exact counts of level sets for k < 12

k 104 106 108 1010 ≈ δk
1 5,000 500,000 50,000,000 5,000,000,000 .5
2 834 77,696 7,436,825 720,726,912 .070
3 965 91,602 8,826,498 859,002,140 .084
4 877 79,986 7,691,971 748,412,490 .074
5 612 59,518 5,684,323 555,900,984 .055
6 456 40,641 4,031,009 401,146,301 .040
7 287 29,565 3,016,881 300,330,932 .030
8 202 23,190 2,324,769 233,611,502 .023
9 153 17,914 1,800,298 182,793,491 .018

10 159 13,899 1,401,307 144,740,573 .015
11 103 10,487 1,131,836 118,302,267 .012

≥ 12 352 55,682 6,654,283 735,032,408

The largest values of k encountered here up to the various bounds: 104: 28, 106:
86, 108: 247, 1010: 618. Perhaps the densities δk are monotone for k ≥ 3.

Steve Fan (UGA) Integers Conference 2025 May 17, 2025 16 / 33



Shifted primes The distribution of ω∗(n) Shifted-prime divisors of shifted primes

The densities δk(ω
∗)

We have seen that δk(ω) = δk(τ) = 0 for every fixed k ∈ N. Consequently, the
densities of the tails {n ∈ N : ω(n) > k} and {n ∈ N : τ(n) > k} are both equal
to 1.

But this is not the case for ω∗.

Theorem 2 (F.–Pomerance, 2024)

For x, y ≥ 1, let N(x, y) := #{n ≤ x : ω∗(n) ≥ y}. Then there exists a suitable
constant c > 0 such that for all x ≥ 1 and all sufficiently large y,⌊

x

yc log log y

⌋
≤ N(x, y)� x log y

y
.

The lower bound follows from the result of Adleman, Pomerance and Rumely
(1983) on the maximal order of ω∗, while the proof of the upper bound makes
use of a theorem due to McNew, Pollack and Pomerance (2017), which asserts
that the number of n ≤ x with a shifted prime divisor > y is O(x/(log y)η+o(1)),
where η = 1− (1 + log log 2)/ log 2 is the Erdős–Ford–Tenenbaum constant.
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Bernoulli numbers sharing the same fractional part

In our proof of Theorem 1, we used a result of Erdős and Wagstaff (1980)
concerning the density δ(〈n〉) of 〈n〉 for a given n ∈ N, where

〈n〉 := #{m ∈ N : Bm ≡ Bn (mod 1)}
= #{m ∈ N : (p− 1) | m⇔ (p− 1) | n}. (von Staudt–Clausen)

Note that 〈1〉 = L1 = N \ 2N, so that δ(〈n〉) = 1/2 for odd n. Erdős and
Wagstaff showed that δ(〈n〉) exists and is positive for every n ∈ N. They also
observed that if n = min〈n〉, then δ(〈n〉) < 1/n. In this case, they asked for a
positive lower bound for δ(〈n〉).

Theorem 3 (F.–Pomerance, 2024)

Let n ∈ 2N be such that n = min〈n〉. Then

δ(〈n〉) ≥ 1

nO(τ(n))
.
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The moments of ω∗

For any arithmetic function f , we denote by Mk(x; f) the kth moment of
f for each k ∈ N. That is,

Mk(x; f) :=
1

x

∑
n≤x

f(n)k.

For every fixed k ∈ N, we have

Mk(x;ω) ∼ (log log x)k,

Mk(x; τ) ∼ ak(log x)2k−1,

where

ak :=
1

(2k − 1)!

∏
p

(
1− 1

p

)2k ∑
ν≥0

(ν + 1)k

pν
.
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The moments of ω∗

Prachar (1955) showed M1(x;ω∗) ∼ log log x, by observing that∑
n≤x

ω∗(n) =
∑
n≤x

∑
p−1|n

1 =
∑
p≤x+1

⌊
x

p− 1

⌋
= x

∑
p≤x

1

p− 1
+O

(
x

log x

)
.

He also proved M2(x;ω∗) = O((log x)2), which was improved to O(log x)
by Murty and Murty (2021), who also showed M2(x;ω∗)� (log log x)3

and conjectured M2(x;ω∗) ∼ C log x for some constant C > 0. Ding
(2023) obtained the order matching lower bound M2(x;ω∗)� log x.

In general,

Mk(x;ω∗) =
1

x

∑
n≤x

ω∗(n)k =
1

x

∑
[p1−1,...,pk−1]≤x

⌊
x

[p1 − 1, ..., pk − 1]

⌋
.
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The moments of ω∗

Erdős and Prachar (1955) showed

S2(x) :=
∑

[p−1,q−1]≤x

1 = O(x),

which allows us to write

M2(x;ω∗) =
1

x

∑
[p−1,q−1]≤x

⌊
x

[p− 1, q − 1]

⌋
=

∑
[p−1,q−1]≤x

1

[p− 1, q − 1]
+O(1).

The upper bound M2(x;ω∗) = O(log x) follows easily by partial summation.

Theorem 4 (F.–Pomerance, 2024)

We have M3(x;ω∗) � (log x)4 for all x ≥ 2.

Conjecture 1 (F.–Pomerance, 2024)

For every k ≥ 2, Mk(x;ω∗) ∼ Ck(log x)2k−k−1, where Ck > 0 is constant.

Steve Fan (UGA) Integers Conference 2025 May 17, 2025 21 / 33



Shifted primes The distribution of ω∗(n) Shifted-prime divisors of shifted primes

The moments of ω∗
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The constant C2

Under the Elliott–Halberstam conjecture, Ding, Guo, and Zhang (2023)
deduced that C2 = 2ζ(2)ζ(3)/ζ(6) ≈ 3.88719. However, an error found in
their paper (inherited from Murty and Murty (2021)) by Pomerance and I
shows that this value is probably incorrect.

Moreover, numerical computations seem to suggest C2 ≈ 3.2.

Conjecture 2 (F., 2025)

We have

C2 =
ζ(2)2ζ(3)

ζ(6)
≈ 3.19709.

This conjecture is suggested by a heuristic based on the Hardy–Littlewood
conjecture on the infinitude of prime pairs p = an+ 1 and q = bn+ 1,
where 1 ≤ a < b.
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This conjecture is suggested by a heuristic based on the Hardy–Littlewood
conjecture on the infinitude of prime pairs p = an+ 1 and q = bn+ 1,
where 1 ≤ a < b.
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The constant C2

Table 2: Numerical values of M2(10k;ω∗) and S2(10k;ω∗)

k M2(10k) S2(10k) A(10k) B(10k)

2 9.71 2.42 9.34061 2.5028
3 15.530 2.624 15.4058 2.7342
4 21.9128 2.8175 21.8477 2.8499
5 28.49311 2.88636 28.4958 2.9193
6 35.261891 2.950910 35.2745 2.9656
7 42.1296839 2.9923851 42.1432 2.9987
8 49.07181351 3.02166709 49.0779 3.0235
9 56.067311859 3.043042188 56.0629 3.0428
10 63.1033824202 3.0595625181 63.0876 3.0582

The M2 values fits nicely with A(x) := C2(log x− log log x)− 1/2, and
the S2 values may fit with B(x) := C2(1− 1/ log x).
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The shifted-prime divisor function over shifted primes

Theorem 5 (F., 2025)

For any fixed a, b ∈ Z \ {0}, we have

1

π(x)

∑
b<q≤x

ω∗a(q − b) = Ca,b log log x+O (1) ,

where Ca,b ≥ 0 is an explicit constant.

Theorem 6 (F., 2025)

For any fixed a, b ∈ Z \ {0} such that 2 | a or 2 - b, we have

1

π(x)

∑
b<q≤x

ω∗a(q − b)2 � log x.
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A generalization of Erdős–Prachar

The treatment of the second moment requires upper bounding∑
[p−a,q−b]≤x
p>a,q>b

f([p− a, q − b]),

which may be viewed as a two-dimensional analogue of∑
a<p≤x+a

f(p− a),

where f : N→ R≥0 is a “nice” multiplicative function.

Erdős and Prachar (1955) showed∑
[p−1,q−1]≤x

1 = O(x).
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A generalization of Erdős–Prachar

For any A1 > 0 and A2 : R>0 → R>0, denote by M (A1, A2) the collection of
multiplicative functions f : N→ R≥0 satisfying:

1 f(n) ≤ AΩ(n)
1 for all n ∈ N.

2 ∀ε > 0, f(n) ≤ A2(ε)nε for all n ∈ N.

Theorem 7 (F., 2025)

Let a, b ∈ Z \ {0}, A1 > 0, A2 : R>0 → R>0, and f ∈M (A1, A2). Then

∑
[p−a,q−b]≤x
p>a,q>b

f([p− a, q − b])�a,b,A1,A2

x

(log x)2
Ef (x)

∫ x

2

Ef (t)2

t(log t)2
dt

for all x ≥ 2, where

Ef (x) := exp

∑
p≤x

f(p)

p

 .
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The shifted-prime divisor function over shifted primes

For any b ∈ Z \ {0}, let Nb(x, y) := #{b < q ≤ x : ω∗(q − b) ≥ y}.

Theorem 8 (F., 2025)

Fixing any b ∈ Z \ 2Z, there are constants c1, c2 > 0 such that

π(x)

yc1 log log y
< Nb(x, y)� π(x) log y

y

for all sufficiently large x and y ≤ xc2/ log log x.

The proof of Theorem 8 uses a slightly upgraded version of the result of
Adleman, Pomerance and Rumely (1983) on the maximal order of ω∗ and
a bound on the number of shifted primes with a large shifted prime divisor
due to Luca, Pizarro-Madariaga, and Pomerance (2014).
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Shifted primes possessing a large shifted-prime divisor

McNew, Pollack and Pomerance (2017) showed that the number of n ≤ x with a
shifted prime divisor q − 1 > y is

� x

(log y)η
√

log log y
,

where

η := 1− 1 + log log 2

log 2
= 0.0860713...

is the Erdős–Tenenbaum–Ford constant. This makes more precise the bound
� x/(log y)c for some c > 0 due to Erdős and Wagstaff (1980). Ford (2017)
further refined these results for y in various ranges.

Luca, Pizarro-Madariaga, Pomerance (2014) studied the shifted-prime analogue,
proving that for any u ∈ N and v ∈ Z, there is a constant c = c(u, v) > 0 such
that for x, y ≥ 3, the number of p ≤ x such that up+ v has a shifted-prime
divisor q − 1 > y with q 6= p is

�u,v
π(x)

(log y)c
.
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Shifted primes possessing a large shifted-prime divisor

Theorem 9 (F., 2025+)

Let a ∈ Z \ {0}, u ∈ N and v ∈ Z \ {−au}. The number of primes p ≤ x
such that up+ v has a shifted-prime divisor q − a > y is

�a,u,v
π(x)

(log y)η
√

log log y

for all x, y ≥ 3. In addition, if 3 ≤ y ≤ x/2, then the count is

�a,u,v
π(x) log(x/y)

log x
.

The proof of Theorem 9 is based on a general Hardy–Ramanujan type
inequality for the count of numbers in a sifted set with a prescribed
number of prime factors (F., 2025+).
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A Hardy–Ramanujan inequality for sifted sets

Let f : N→ R≥0 be a “nice” multiplicative function, and let S be the set
of integers n ∈ [1, x] which avoid a subset Ep ⊆ (Z/pZ)× of ν(p)� 1
reduced residue classes modulo p for every prime p. Then

∑
n∈S

ω/Ω(n)=k

f(n)�
xMf (x)k−1

(k − 1)! log x

∏
p≤x

(
1− ν(p)

p

)

uniformly for 1 ≤ k ≤ c0Mf (x), where c0 > 0 is a suitable constant, and

Mf (x) :=
∑
p≤x

f(p)

p
.

Pollack (2020) proved similar results for ω and all k ∈ N when S = [1, x].
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Shifted primes in the image of λ

Recall the Carmichael λ-function λ(n) = Exp(Z/nZ)×:

λ(pv) =

{
1
2ϕ(pv), if p = 2 and v ≥ 3,

ϕ(pv), otherwise,

and λ(n) = lcm{λ(pv) : pv ‖ n}.

Luca and Pomerance (2013) proved that

#(λ(N) ∩ [1, x]) ≤ x

(log x)η+o(1)
,

and the order matching lower bound was furnished by Ford, Luca, and
Pomerance (2014).
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Shifted primes in the image of λ

Corollary 10

Given any u ∈ N and v ∈ Z \ {−u}, we have

#((uP + v) ∩ λ(N) ∩ [1, x]) ≤ π(x)

(log x)η+ou,v(1)

for x ≥ 3. On the other hand, we have

#((uP− u) ∩ λ(N) ∩ [1, x]) �u π(x)

for sufficiently large x.

It seems natural to conjecture that for any fixed u ∈ N and v ∈ Z \ {−u},

#((uP + v) ∩ λ(N) ∩ [1, x]) =
π(x)

(log x)η+o(1)
.
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Happy Birthday, Carl and Melvyn!
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