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Proof of the Sheldon Conjecture "
Carl Pomerance and Chris Spicer P rime Nu mb ers

A Computational Perspective

Abstract.Tn (3]
between several chracters i the CBS television sitation comedy The Big Bang Theory. The
authors of [3] leave open the question of whether 73 is the unique Shaldon prime. This paper
answers this question in the affirmative.

1. INTRODUCTION. A Sheldon prime was first defined in [3] as an homage to
Sheldon Cooper, a fictional theoretical physicist, see Figure 1, on the television show
The Big Bang Theory, who claimed 73 is the best number because it has some seem-
ingly unusual properties. First note that not only is 73 a prime number, its index in
the sequence of primes is the product of its digits, namely 21 it is the 21st prime. In
addition, reversing the digits of 73, we obtain the prime 37, which is the 12th prime,
and 12 is the reverse of 21.

We give a more formal definition. For a positive integer n, let p,, denote the nth
prime number. We say p, has the product property if the product of its base-10 digits
is preclscly n. For any posiive intger 7, we define rev(z) to be the integer whose
sequence of the reverse of the digits of z. For example, rev(1234) =
391 and m(sm) 3 We say p, satsfies the miror property H1eV(Da) = Presto)

Definition. The prime p,, is a Sheldon prime if it satisfies both the product property
and the mirror property.

In (3], the “Sheldon Conjecture” was posed that 7:
Section 5 we prove the following result.

the only Sheldon prime. In

Theorem 1. The Sheldon conjecture holds: 73 is the unique Sheldon prime.

2. THE PRIME NUMBER THEOREM AND SHELDON PRIMES. Let 7(z) de-
note the number of prime numbers in the interval [2, z]. Looking at tables of primes
it appears that they tend to thin out, becoming rarer as one looks at larger numbers.
‘This can be expressed rigorously by the claim that lim (z)/z = 0. In fact, more is

true: we know the rate at which the ratio 7(z) /2 tends (0 0. This is the prime number
theorem:
"
lim )
M 2/ logw
where “log” s the natural logarithm function. This theorem was first proved in 1896

independently by Hadamard and de la Vallée Poussin, following a general plan laid
out by Riemann about 40 years carlier (the same paper where he first enunciated the
now famous Riemann hypothesis).
We actually know that (z) is slightly larger than &/ log z for large values of z;
in fact there is a secondary term /(log )7, a positive tertiary term, and so on. The
se “large values of 7 can be made numerically explicit: A result of Rosser and
Schoenfeld [7, (3.5)] i that

Richard Crandall

@ Springer Carl Pomerance

forallz > 17. (1)

)>
“) > gz
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Shifted primes
®000

Shifted primes

A shifted prime is an integer of the form p — a, where p is prime and
a € Z\{0}.
We say that p — a # 0 is a shifted-prime divisor of n € N if (p — a) | n.

For each n € N, denote by w}(n) the number of shifted-prime divisors
p—a of n:

wy(n) :==#{p > a prime: (p —a) | n}.

We will focus mainly on w*(n) := wj(n) and visit briefly the general case
near the end of the talk.

Shifted-prime divisors p — 1 of 24: 1, 2, 4, 6, 12. So w*(24) = 5.
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Shifted primes
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The set P,

The sets N and P, = {p — a: p > a} are structurally similar in many ways.

@ Equidistribution in arithmetic progressions:

%,#{neNm[lvm];nEb(modk)}N%,
B —
@) p(k)’

as x — oo, where k € N, b € Z, and ¢ € Z with ged(a + ¢, k) = 1.

~H#{neP,N[l,z]: n=c (modk)} ~
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Shifted primes
0e00

The set P,

The sets N and P, = {p — a: p > a} are structurally similar in many ways.

@ Equidistribution in arithmetic progressions:
1 1
— - #{neNn[l,z]: n=>b (modk)} ~ =
T
1
p(k)’

as x — oo, where k € N, b € Z, and ¢ € Z with ged(a + ¢, k) = 1.

%~#{neIP’aﬂ[17m]:nEC(mOdk)}N

@ Typical number of prime factors: Let S =N or Py, and S, = SN[, z].
Most numbers n in S have about loglogn prime factors.
) 1 w(n) —loglogn 1 /T 2
1 . €S, ———>"<Tj)=—= /2 dt.
Tt #S, # {n Vioglogn 7 V2T J—so ‘
S = N due to Erdés and Kac (1940) and S = PP, due to Halberstam (1955).
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feTe] Yo}

The set P,

@ Twin primes: Are there infinitely many shifted primes p + 2 that are
prime?

The recent breakthroughs made by Zhang, Maynard and Polymath,
building on early works of Goldston, Pintz and Yildirim, shows that
there exists an even integer 2 < a < 246 such that there are infinitely
many shifted primes p + a that are prime.
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Shifted primes
feTe] Yo}

The set P,

@ Twin primes: Are there infinitely many shifted primes p + 2 that are
prime?

The recent breakthroughs made by Zhang, Maynard and Polymath,
building on early works of Goldston, Pintz and Yildirim, shows that
there exists an even integer 2 < a < 246 such that there are infinitely
many shifted primes p + a that are prime.

@ A conjecture of Pomerance on smooth shifted primes (1980):

L'#{péa::P*(p—l)Sy}wé#{ngxzP*(n)gy}

m(x)

for x >y as y — 0o, where P (m) is the largest prime factor of m.
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Shifted primes
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Density of smooth numbers

Figure 1: The Dickman—de Bruijn function p(u) on [1, 8]
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i #{n < x: PT(n) < 2!/} ~ p(u).
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The distribution of w™* (n)
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The function w*

The function

was first introduced by Prachar (1955). It has played important roles in

@ the 1983 development of the first unconditional deterministic primality test,
running in nearly polynomial time, by Adleman, Pomerance and Rumely,

@ the study of Carmichael numbers:

A Carmichael number n is a composite number satisfying b™ = b (mod n)
for all b € Z. Korselt showed in 1899 that n € N is a Carmichael number if
and only if n is square-free, and p | n = p — 1| n — 1. Alford, Granville and
Pomerance (1994) proved that for sufficiently large x, the interval [1, z]
contains at least 2>/ Carmichael numbers. The exponent “2/7" has been
improved to 0.332 by Harman (2005) and to 0.3389 by Lichtman (2022).
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The distribution of w™(n)
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The maximal order of w*

The minimal order of w* is trivially 1: w*(n) =1 for odd n € N.

For the maximal orders, we have

limsu w(n) =
it logn/loglogn
1
lim sup L(n) =log2. (Wigert, 1907)

z—oo logn/loglogn
Prachar (1955) showed that for infinitely many n,

logn

w*(n) > exp (cl( ) (unconditionally),

loglogn)?

1 1
w*(n) > exp ((5 log 2 — e) %) (under GRH),

where ¢; > 0 is some absolute constant, and € > 0 is fixed but otherwise arbitrary.
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The distribution of w™* (n)
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The maximal order of w*

Adleman, Pomerance and Rumely (1983) removed one log logn factor
from Prachar’s unconditional bound, obtaining

logn
w*(n) >exp [ co—>—
(n) p( 2loglogn>
for infinitely many n, where ¢y > 0 is some absolute computable constant.

They also conjectured that one can take co = log2 — € for any € > 0. This
conjecture, if true, would imply that the minimal order of the Carmichael
function \(n) := Exp(Z/nZ)* is

1
exp (l (loglogn) log log log n) ,
og?2

as indicated in Erd8s, Pomerance, and Schmutz (1991).
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The maximal order of w*

Recently, Pollack and | examined Prachar’s proof of his GRH-conditional estimate
and observed the following:

@ The Adleman-Pomerance-Rumely conjecture holds if given any € € (0,1),
(x)
m(z;q,1) =#{p<z:p=1(modq)} >,
(550,1) = #{ (moda)} > 7

for q | Hp<(1_5) log z P POssibly with extremely rare exceptions.
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The maximal order of w*

Recently, Pollack and | examined Prachar’s proof of his GRH-conditional estimate
and observed the following:

@ The Adleman-Pomerance-Rumely conjecture holds if given any € € (0,1),

m(z;q,1) :=#{p<z:p=1(modq)} >, M

v(q)

for q | Hp<(1_5) log z P POssibly with extremely rare exceptions.
© The Adleman—Pomerance-Rumely conjecture also follows from Pomerance’s
conjecture that

%‘#{pﬁm:P*(p—l)Sy}”é'#{”ﬁﬁpﬂn)sy}

for x > y as y — oo. It is directly related to lower bounding

> I «
p<z g<(l—e€)logx
ql(p—1)
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The maximal order of w*

© By modifying Prachar’s argument, we found that for infinitely many n,

logn

w*(n) > exp (0.6269 In2- ) (unconditionally),

loglogn
logn

w*(n) > exp (0.6823 In2. ——
loglogn

) (under GRH).

The first inequality is derived from a result on 7(x; g, a) in Alford, Granville
and Pomerance (1994).
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The densities 0y (w*)

For any arithmetic function f, we denote by dx(f) the natural density of
the level set {n € N: f(n) = k} for each k € N, namely,

5u(f) = lim TS TS =k}

T—00 €T

provided that this limit exists.
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The densities 0y (w*)

For any arithmetic function f, we denote by dx(f) the natural density of
the level set {n € N: f(n) = k} for each k € N, namely,

W)=, . |
provided that this limit exists. Landau (1900) showed that for every fixed
keN,
z(loglog z)F1

(k—1)!logzx

as x — 00. So d(w) = 0. Since 7(n) > 2*, we also have §;(7) = 0 for
every k € N.

What about d(w*)?

#{n<z:wh)=k}~
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The densities 0y (w*)

Theorem 1 (F.—Pomerance, 2024)

For every k € N, the k-level set L, := {n € N: w*(n) = k} admits a positive
natural density 6;,. Moreover, we have ), -, 0 = 1.

The key step in establishing Theorem 1 is to verify L5 # (). The proof makes use
of Chen's theorem:

Po(z) = {2<p<z: Q(p—1)/2) <2and P~ ((p—1)/2) > 2%/} >

(logz)?”
Fixing n € 2N, we wish to find some large p € Ps(x) such that
w'(n(p—1)/2) =w"(n) + 1.
If p € P2(x) fails this property, then there are a | n and b | (p — 1)/2 with
a,b > 1 such that ab+ 1 a prime # p.
Q b= (p—1)/2 with ab+ 1 is prime with a > 2
@ p— 1 =2¢b with ab + 1 prime, where q,r € (z3/1, 28/11).
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The densities 0y (w*)

Q b= (p—1)/2 and ab+ 1 is prime with a > 2

This means that (i) P~(b) > x3/1, and (i) 2b+ 1 and ab + 1 are both
prime. Given a, the count for p is O(z/(logz)?).
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The densities 0y (w*)

Q b= (p—1)/2 and ab+ 1 is prime with a > 2

This means that (i) P~(b) > x3/1, and (i) 2b+ 1 and ab + 1 are both
prime. Given a, the count for p is O(z/(logz)?).

@ p— 1 =2¢b with ag + 1 prime, where ¢,r € (z3/1, z8/11),

For any q € (x3/11 28/11) the number of primes b < x/2q such that both
ab+1 and 2gb+ 1 are prime is

-1
x 1 loglogq x
- | I 1- = . )
< yllogw)® rl@e—a) ( 7“) ST ¢ (g

Summing this bound on ¢ € (2%, 2%/11) gives < xloglogz/(log x)* for
the number of p in consideration.

The contributions from both cases are o(#P2(x)). So for sufficiently large x, we
can find p € Pa(x) satisfying

wi(n(p—1)/2) = w*(n) + 1.
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The densities 0y (w*)

Table 1: Exact counts of level sets for k < 12

k] 107 10° 10° 107 [ ~ o
1 [ 5,000 | 500,000 | 50,000,000 | 5,000,000,000 5
2| 834| 77,606 | 7,436,825 | 720,726,912 || .070
3| 965 | 91,602 | 8,826,498 | 859,002,140 || .084
4| 877 | 79,986 | 7,691,971 | 748,412,490 | .074
5| 612 | 59,518 | 5,684,323 | 555,900,984 || .055
6| 456 | 40,641 | 4,031,009 | 401,146,301 | .040
7| 287 | 20565 | 3,016,881 | 300,330,932 || .030
8| 202 | 23,190 | 2,324,769 | 233,611,502 | .023
9| 153 | 17,914 | 1,800,298 | 182,793,491 | .018
10 | 159 | 13,899 | 1,401,307 | 144,740,573 || .015
11| 103 | 10487 | 1,131,836 | 118,302,267 || .012
>12 | 352 | 55682 | 6,654,283 | 735,032,408

The largest values of k encountered here up to the various bounds: 10%: 28, 106:
86, 10%: 247, 10'°: 618. Perhaps the densities 5 are monotone for k > 3.
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The densities 0y (w*)

We have seen that i (w) = dx(7) = 0 for every fixed k € N. Consequently, the
densities of the tails {n € N: w(n) > k} and {n € N: 7(n) > k} are both equal
to 1.
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The densities 0y (w*)

We have seen that i (w) = dx(7) = 0 for every fixed k € N. Consequently, the
densities of the tails {n € N: w(n) > k} and {n € N: 7(n) > k} are both equal
to 1. But this is not the case for w*.

Theorem 2 (F.—Pomerance, 2024)

For x,y > 1, let N(z,y) := #{n < z: w*(n) > y}. Then there exists a suitable
constant ¢ > 0 such that for all x > 1 and all sufficiently large y,

1
s | < e < 252

yc loglogy

The lower bound follows from the result of Adleman, Pomerance and Rumely
(1983) on the maximal order of w*, while the proof of the upper bound makes
use of a theorem due to McNew, Pollack and Pomerance (2017), which asserts
that the number of n < 2 with a shifted prime divisor > y is O(z/(log y)"+°™),
where n =1 — (1 +loglog2)/log?2 is the Erdds—Ford—Tenenbaum constant.
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Bernoulli numbers sharing the same fractional part

In our proof of Theorem 1, we used a result of Erdés and Wagstaff (1980)
concerning the density 6({n)) of (n) for a given n € N, where

(ny :=#{m e N: B,, = B,, (mod 1)}
=#{meN: (p—1)|m< (p—1)|n}. (von Staudt—Clausen)

Note that (1) = £1 = N\ 2N, so that §((n)) = 1/2 for odd n. Erdés and
Wagstaff showed that 6((n)) exists and is positive for every n € N. They also
observed that if n = min(n), then §((n)) < 1/n. In this case, they asked for a
positive lower bound for §((n}).

Theorem 3 (F.—Pomerance, 2024)

Let n € 2N be such that n = min(n). Then

1
5((n)) > O
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The moments of w*

For any arithmetic function f, we denote by My (x; f) the kth moment of
f for each k € N. That is,

My f) = 3 f)

n<x
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The moments of w*

For any arithmetic function f, we denote by My (x; f) the kth moment of
f for each k € N. That is,

My f) = 3 f)

n<x
For every fixed k € N, we have

M) ~ (loglog )",

My (z;7) ~ ag(log a:)2k_1,

where

o 1\ = (v + 1)
womell(o5) T

v>0
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The moments of w*

Prachar (1955) showed M (x;w*) ~ loglog x, by observing that

2w m=23 3 1= 3, LﬂflJ ::UzpilJrO(lng)'

n<x n<z p—1|n p<z+1 p<lzx

He also proved Ms(z;w*) = O((logx)?), which was improved to O(log z)
by Murty and Murty (2021), who also showed Ms(x;w*) > (loglog x)3
and conjectured My (z;w*) ~ C'log z for some constant C' > 0. Ding
(2023) obtained the order matching lower bound Ma(z;w*) > log x.

In general,

Mk<$;w):EZw (n)k:E Z hpl—l,...,pk—l]J.

n<w [pl_lvapk_l]gw
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The moments of w*

Erd8s and Prachar (1955) showed

[p—1,g—-1]<z
which allows us to write
1 T 1
D | D S e R
—1,g—-1 —1,q-—1
T ptg-1)<e p=1g-1] [p—1,q-1]<z p=1q-1]

The upper bound Ms(z;w*) = O(log z) follows easily by partial summation.
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The moments of w*

Erd8s and Prachar (1955) showed

which allows us to write

*_l T _ 1
Mrlww) =2 2 hp—l,q—l]J 2 [p—l,q—1]+0(1)'

[p—1,9-1]<z [p—1,g-1]<z

The upper bound Ms(z;w*) = O(log z) follows easily by partial summation.

Theorem 4 (F.—Pomerance, 2024)

We have M3(z;w*) < (logz)? for all z > 2.

Conjecture 1 (F.—Pomerance, 2024)

For every k > 2, Mj,(x;w*) ~ Cy(log )2 =1, where C}, > 0 is constant.
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The constant (Y

Under the Elliott—Halberstam conjecture, Ding, Guo, and Zhang (2023)
deduced that Cy = 2¢(2)((3)/¢(6) ~ 3.88719. However, an error found in
their paper (inherited from Murty and Murty (2021)) by Pomerance and |
shows that this value is probably incorrect.

Moreover, numerical computations seem to suggest C ~ 3.2.

Steve Fan (UGA) Integers Conference 2025 May 17, 2025 22/33



The distribution of w™* (n)
00000000000000e0

The constant (Y

Under the Elliott—Halberstam conjecture, Ding, Guo, and Zhang (2023)
deduced that Cy = 2{(2)((3)/{(6) =~ 3.88719. However, an error found in
their paper (inherited from Murty and Murty (2021)) by Pomerance and |
shows that this value is probably incorrect.

Moreover, numerical computations seem to suggest C ~ 3.2.

Conjecture 2 (F., 2025)
We have

) 2
0 = S2¢B) 310700,
¢(6)
This conjecture is suggested by a heuristic based on the Hardy-Littlewood
conjecture on the infinitude of prime pairs p=an+ 1 and ¢ =bn + 1,
where 1 < a < b.
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The constant (Y

Table 2: Numerical values of My (10%;w*) and Sy(10%;w*)

k Mo (10F) So(10%) A(10%) | B(10%)
2 9.71 2.42 9.34061 | 2.5028
3 15.530 2.624 15.4058 | 2.7342
4 21.9128 2.8175 21.8477 | 2.8499
5 28.49311 2.88636 28.4958 | 2.9193
6 35.261891 2.950910 35.2745 | 2.9656
7 42.1296839 2.9923851 42.1432 | 2.9987
8 49.07181351 3.02166709 49.0779 | 3.0235
9 56.067311859 3.043042188 | 56.0629 | 3.0428
10 | 63.1033824202 | 3.0595625181 | 63.0876 | 3.0582

The My values fits nicely with A(z) := Ca(logz — loglogz) — 1/2, and
the Sy values may fit with B(z) := Cy(1 — 1/log z).
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Shifted-prime divisors of shifted primes
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The shifted-prime divisor function over shifted primes

Theorem 5 (F., 2025)

For any fixed a,b € Z\ {0}, we have

where C,, > 0 is an explicit constant.

Theorem 6 (F., 2025)

For any fixed a,b € Z \ {0} such that 2 | a or 21 b, we have

1

g Z wi(q —b)? < logx.

b<qg<lz
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Shifted-prime divisors of shifted primes
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A generalization of Erdés—Prachar

The treatment of the second moment requires upper bounding

> flp—aq-1b]),

[p_azq_b] S:I,'
p>a,q>b

which may be viewed as a two-dimensional analogue of
Z f(p - a’)7
a<p<z+a

where f: N — R>q is a “nice” multiplicative function.

Erdés and Prachar (1955) showed

Z 1=0(x).
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Shifted-prime divisors of shifted primes
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A generalization of Erdés—Prachar

For any A; > 0 and As: Ry — Ry, denote by .#(A;, As) the collection of
multiplicative functions f: N — R>( satisfying:

O f(n) <A™ foralln e N,
Q Ve >0, f(n) < As(e)n® for all n € N.
Theorem 7 (F., 2025)
Let a,b € Z\ {0}, A; >0, As: Rog — Ryg, and f € %(Al,AQ). Then

z T Eg(t)?
[p_agmf([p 0.0 W) aptsts ooz Er (@) / o

p>a,g>b

for all x > 2, where
fp
Ef(x) :=exp ==
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The shifted-prime divisor function over shifted primes

For any b € Z \ {0}, let Ny(z,y) == #{b<q<x:w*(¢—b) > y}.

Theorem 8 (F., 2025)

Fixing any b € Z \ 27, there are constants c1,ca > 0 such that

7 () () logy
ycl loglogy < Nb(x’ y) < Yy

for all sufficiently large = and y < x¢2/leglogx,

The proof of Theorem 8 uses a slightly upgraded version of the result of
Adleman, Pomerance and Rumely (1983) on the maximal order of w* and
a bound on the number of shifted primes with a large shifted prime divisor
due to Luca, Pizarro-Madariaga, and Pomerance (2014).
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Shifted primes possessing a large shifted-prime divisor

McNew, Pollack and Pomerance (2017) showed that the number of n < x with a
shifted prime divisor ¢ — 1 > y is
T

log y)"y/loglogy’

<1

where 1+ loelog 9
pim1— T OBOBZ 860713,
log 2
is the Erdés—Tenenbaum—Ford constant. This makes more precise the bound
< z/(logy)® for some ¢ > 0 due to Erd8s and Wagstaff (1980). Ford (2017)

further refined these results for y in various ranges.

Luca, Pizarro-Madariaga, Pomerance (2014) studied the shifted-prime analogue,
proving that for any u € N and v € Z, there is a constant ¢ = ¢(u,v) > 0 such
that for z,y > 3, the number of p < z such that up + v has a shifted-prime
divisor g —1 >y with g # p is

()
(logy)e’
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Shifted primes possessing a large shifted-prime divisor

Theorem 9 (F., 2025+)

Let a € Z\ {0}, w e N and v € Z\ {—au}. The number of primes p < x
such that up + v has a shifted-prime divisor ¢ — a > vy is

< 7(x)
“? (logy)y/loglog y

for all z,y > 3. In addition, if 3 <y < x/2, then the count is

() log(z/y)
log =

<a,u,v

The proof of Theorem 9 is based on a general Hardy—Ramanujan type

inequality for the count of numbers in a sifted set with a prescribed
number of prime factors (F., 2025+).
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A Hardy—Ramanujan inequality for sifted sets

Let f: N — R>o be a “nice” multiplicative function, and let S be the set
of integers n € [1, z] which avoid a subset &, C (Z/pZ)* of v(p) < 1
reduced residue classes modulo p for every prime p. Then

Y. [ $Mf()!)loga: pl;[z (1 N %)

nesS
w/Q(n)=k

uniformly for 1 < k < coM¢(x), where ¢y > 0 is a suitable constant, and

Zf

p<x

Pollack (2020) proved similar results for w and all k € N when S = [1, z].
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Shifted primes in the image of A

Recall the Carmichael A-function A(n) = Exp(Z/nZ)*:

1 .
v sp(p¥), ifp=2andwv >3,
A(p®) = {2¢(U ) .
o(p¥),  otherwise,
and A(n) = lem{\(p"): p" || n}.
Luca and Pomerance (2013) proved that

x

#AN)N[L,z]) < W,

and the order matching lower bound was furnished by Ford, Luca, and
Pomerance (2014).
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Shifted primes in the image of A

Corollary 10

Given any u € N and v € Z \ {—u}, we have

#((uP +v) N A(N) N [1,2]) < (log::)g—i)(l)

for z > 3. On the other hand, we have
#((uP —u) NAN) N1, z]) =y 7(x)

for sufficiently large x.

v

It seems natural to conjecture that for any fixed v € N and v € Z\ {—u},

m(x)

#((uP +v) NAN) N [1,2]) = (log z)7HoM
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Happy Birthday, Carl and Melvyn!
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